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194. Electronic Structures and Forrnulce; the Ally1 Cation, 
Radical, and Anion. 

By D. M. HIRST and J. W. LINNETT. 
Calculations have been carried out for the n-electron systems of the allyl 

cation, radical, and anion, which contain 2, 3, and 4 electrons, respectively. 
For the cation and anion, which contain an even number of electrons, 
formula: which do not involve electron pairing in bonds, or on atoms, provide 
the best simple representation of the electronic structure, being markedly 
better than those based on the molecular orbital, or the conventional 
Pauling-type resonance approximation involving Lewis structures, both of 
which pair-off electrons in orbitals as far as possible. For the radical, 
which contains an odd number of electrons, the best result is similar, a re- 
sonance hybrid of CH,-CH'--dH, and kH22CH--?CH, providing a better 
wave function than a resonance hybrid of CHgCHkH, and 6H2-CH=CH,. 
For the radical, the results obtained by using wave functions that are rather 
severely restricted are misleading. It is necessary to examine wave functions 
which provide a good approximation to the *' best " solution. The implic- 
ations of these results in molecules such as ozone, and ions such as nitrite 
and acetate, as well as in other species are discussed briefly. 

THE object of the calculations in this paper is an investigation of relative merits of different 
methods of describing the electronic structures of molecules. The most common of these 
are the molecular orbital and valence-bond methods, but recently one of us has suggested 
a formulation that may be regarded as additional and different from both these. The 
various methods may be illustrated by considering the nitrite ion. By the valence-bond 
approach, the simplest description is that in terms of a resonance hybrid of (I) and (11), 

-O=N- Ib 
I 

I I  
I I  

-O-N=O- 

(1) (1 1) (111) (n = node) 

the wave functions describing each of the structures making an equal contribution to the 
overall wave function. The molecular-orbital description may be represented by (111) 
in which the short lines represent electron pairs in cr-orbitals (bonding and lone pair) and 
the long lines represent the two x-orbitals in which there are four electrons. One of these 
(indicated by the lower long line) has no node other than the molecular plane while the 
other (indicated by the upper line) has a central nodal plane. The third (double-quartet 
or non-pairing) representation is that shown by (IV) in which the dots represent single 
electrons. An attempt to be more detailed is in (IVa) where the circles represent electrons 
of one spin and the crosses electrons of the other spin. (For further discussion of spin 
see below.) Representation (IVa) is a single structure in which the electrons of one spin 
have the pattern of the pairs in (I), while those of the other have the pattern of the pairs 
in (11). The structure (IV) is different from a resonance hybrid of (I) and (11). In (IV) 

the electrons are not entirely grouped in pairs. The test of the relative merits of these 
three types of formula has been made by means of calculations carried out on the electrons 
in the x-orbitals of the allyl cation &H6+, radical C,HG and anion C,H,- which have 2, 3, 
and 4 electrons, respectively, in x-orbitals. There are three reasons for choosing these 

Linnett, Nature, 1960, 187, 869; J .  Amer. Chem. SOC., 1961, 88, 2643. 
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species for the test. The first is that reliable published values of the integrals required for 
the calculation are available.2 The second is that the literature contains calculations 
for these systems which enable checks to be made, so ensuring that the results obtained 
are free from error. The third is that the anion is isoelectronic with NO,- and 0,, and is 
closely related to other species such as R*CO,-, while the cation and the radical provide 
valency situations of a simple and instructive kind, as will be seen below. 

As stated above, a number of calculations have been published on the x-electron 
systems of C,H,+, C,H,, and C,H,-.3*4 Our results agree with these, except for certain 
small differences arising from the use of slightly different values for the integrals, etc. In 
one case, there was a larger discrepancy but this resulted from an error in the published 
calculations. In this instance, our figures were in substantial agreement with one of the 
other published sets of results. Higuchi4 has made the most thorough examination of 
these systems, testing the relative success of a wide variety of functions. Some of these 
have also been tested by us. Our figures for such functions have been included in this 
paper so that a direct comparison with our other functions is possible. However, all the 
functions tested by Higuchi retained to a greater or smaller degree the idea that the 
electrons should be considered as far as possible in pairs. It is the conclusion of this 
paper that it is possible to obtain much better approximate wave functions for all three 
species if, for the electrons in the x-orbitals, the concept of pairing is discarded. As a 
result we have found it possible to suggest simple functions which are more successful 
than the best tested by Higuchi. 

Outline of Treatment.-For all three species a quantum-mechanical treatment of the 
same type has been carried out. This may be illustrated by considering the cation in 
which there are two electrons occupying the x-orbitals. It will be supposed that these 
orbitals can be described as combinations derived solely from the three 29n-orbitals on the 
three carbon atoms. There are nine states which can be formed by such combinations, 
namely, three triplet and six singlet states. Any complete treatment (i.e., either valence- 
bond with resonance among all states, or molecular-orbital including interactions among 
all configurations) will lead to the " best " set of wave functions for describing these nine 
states within two limitations : (i) that only certain particular carbon 2pn-atomic orbitals 
have been used as basic functions and (ii) that the potential field for the x-electrons is, in 
effect, approximated. When these " best " wave functions have been obtained, it is 
possible to see which of the approximate procedures provides wave functions closest to 
them. In a later paper a comparison will be made for excited states, but here our main 
concern will be for the three ground states. For instance, for the ground state of the 
ally1 positive ion, we shall be interested in which of the following simple methods produces 
wave functions which are closest to the " best ": (a) the valence-bond methods using a 

+ 
C H s=CHGH 2 CH H=C H a CH,-CH-CH, CHaLCHzCH, 

(v) (VI) (VI 1) (VIII) 

resonance hybrid of (V) and (VI) ; (b)  a molecular-orbital representation (VII) ; or (c) a 
method based on structure (VIII), in which the two bonding electrons are in different bonds. 
(Several functions corresponding to each type will be tested.) We shall find that (VIII) is 
clearly the best. An outline of the results obtained will now be presented; the calculations 
involved the use of Hamiltonians of the type introduced by Goeppert-Mayer and Sklar 
and integrals evaluated by Parr et aL2 

Pam and Crawford, J .  Chem. Phys., 1948, 16, 526, 1049; Parr, Craig, and Ross, ibid., 1950, 18, 
1661. 

8 Chalvet, Compt. rend., 1952, 234, 2369; Ann. Chim. (France), 1954, 9, 97; Chalvet and Daudel, 
J .  Chim. phys., 1952, 49, 629; Moffitt, proc. Roy. SOC., 1953, A ,  218, 486; Berthier, Compt. rend., 1954, 
288, 91; J .  Chim. phys., 1955, 52, 141; Lefkovits, Fain, and Matsen, J .  Chem. Phys., 1955, 23, 1690; 
Hunt, Peterson, and Simpson. ibid., 1957, 27, 20. 

4 Higuchi, J .  Chem. Phys., 1957, 28, 151, 825. 
6 Goeppert-Mayer and Sklar, J .  Chcm. Phys., 1938, 6,  645. 
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Electron spin. In the later parts of this paper it will be necessary to consider the spin 

of the electrons and to ensure that the wave functions describe states in such a way that 

c H z X ~  HLC H a (VI I Ia) 

the spin is appropriately quantised. For formula (VIII) for the ground state of the allyl 
positive ion, the spin situation could be described by using (VIIIa). The wave function 
would be separable into two parts and would involve two determinants: for one x would 
represent a spin quantum number of +Q, and o one of -4; for the other the symbolism 
would be reversed. The orbitals occupied by the two electrons would be some form of 
bond orbitals, there being one electron to each orbital. 

For the allyl negative ion, formula (IX), analogous to (IVa) for NO,-, might be written 
as (IX). As for the positive ion, this represents two spin distributions ( i e . ,  two 4 by 4 

X X 

;H,-'?-CHLEH, ;H ,LCH*CH CHZL CH"CH, 

(1 x> (I=> (1 Xb) 

determinants; the functions in the four columns would be two atomic and two bond 
orbitals). However, in general, the wave function which corresponds to formulation 
(IX) will involve too great a restriction on spin distribution ( i .e . ,  it is not an eigenfunction 
of 9). For a satisfactory description, corresponding to the proper quantisation of spin, 
it is necessary to include also other spin distributions (IXa and IXb). In this paper, the 
combination that has been'used is the following: the determinants corresponding to (IX), 
in which the spins alternate along the molecule, have been given the greatest weight, the 
determinants corresponding to the other spin distributions (IXa and IXb) being given 
(a) equal weight, and (b)  a total weight equal to that of the functions in which the spins 
alternate along the molecule (i.e., IX). So the final function used combines (IX), (IXa), 
and (IXb) with the relative weights 1, 8, Q (this is an eigenfunction of S2). However, it 
is found that, if bond orbitals are described by linear combinations of the atomic orbitals 
of the component atoms associated with the one-electron bond, the wave function derived 
from (IX) alone is equal to that derived from the above combination. So, with this bond 
function, structure (IX) does provide a satisfactory wave function, though with other 
formulations of the bond functions it might not. 

In this case, the contributing 
structures in which the spin distributions are specified are (Xa, b, and c). These are 
combined in the same way as for the negative ion, so that they have the relative weights 
1, Q, f [in this case (Xa) alone does not provide a satisfactory function]. Because the 

c H,ZC H Z ~ H  ,, C H , X C H ~ H ,  CHBXCHXtH, CH,~CHII-:H, 

(XI m a >  (Xb) (XC> 

contributions of the different spin distributions are combined in a specified manner, 
formulze such as (X), in which dots only are used, serve, so far as this paper is concerned, 
to describe a function completely, once the form of the bond orbitals has been decided. 

For the allyl radical, formula (X) will be examined. 

RESULTS OF CALCULATIONS 
AZZyZ Positive Ion.-Within the limitations referred to above, the nine states of this ion for 

which S, = 0,* but which involve different dispositions of the two electrons among x-type 
orbitals, can be described by various combinations of the following nine simple determinantal 
wave functions: 

=. ( a d $ )  ; 4 2  = (ba,aP); $8 = (aa,cP); 

$4 = (ca,aP); +6 = (ba,cP); +6 = (ca,bp); 
+, = (aa,aB); +s = (ba,bP); +!, = (ca,cP); 

ID S, = 0 means that an equal number of electrons must be assigned a- and /3-spin wave functions 
so that the magnitude of the spin angular momentum about the specified (2) direction is zero. 
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u, b, and c designate the 2px-orbitals on the three carbon atoms (b refers to the central atom). 
a and p are the spin wave functions corresponding to S, = ++ and -&. The symbol (ua,bp) 
represents the determinantal function : 

b(2) P(2) 

where the two electrons are described as 1 and 2. We shall further abbreviate (ua, bp) to (u,b) 
it being understood that always the a spin wave function is associated with the first orbital and 
the p spin wave function with the second. The symmetry of the system, and the requirement 
that the wave functions must describe states for which the resultant spin angular momentum 
is quantised, limit the combinations of the above functions that are allowed. For instance, 
there are four combinations that correspond to states which have totally symmetric wave 
functions and a zero resultant spin angular momentum (singlet state) usually described as lA1. 
These are 

$1' = + ( b D u )  + ( b D c )  + (c#b);  $2+ = ( @ D c )  + ( c D u ) ;  

$s+ = + ('DC); #4+ = (W. 
The other three classes (8A lB2, and sB9) include the following combinations : 

We have carried out calculations like those of Lefkovits, Fain, and Matsen to determine the 
linear combinations of the above functions (#l+D #a+, etc.) which describe the nine states most 
satisfactorily. These functions will be given by expressions of the following type: e.g., for a 
member of the 'Al class 

C1+$1+ + Ca+$,+ + C,+#,+ + C4+#4+. 

The results are summarised in Table 1 which lists the energies calculated for the nine states, 
and the coefficients C1+, C,+ . . . CO+, which are the coefficients in the expressions for the corre- 
sponding wave functions. The energies listed are relative to the energy of two electrons in 
orbitals on separate carbon atoms, 2WIP. 

TABLE 1. 

Energies (E) and coefficients of component functions for " best " waw functions for 
the ally1 positive ion. 

Symmetry type E - 2W,, Coefficients 
' A  1 (ev) c,+ c*+ Ca+ c,+ 

- 30.396 0-313 0.250 0.026 0.233 
- 22.785 -0.161 - 0.036 - 0.399 0.661 
- 16.247 - 0.323 0.229 - 0.26 1 0.957 
- 10.460 - 0.362 0.158 0.712 0.438 

Symmetry type E - 2W,, Coefficients 
(ev) c,+ c,+ 

- 24.435 0.526 - 25.642 0-486 0.082 
- 11.282 - 0.251 0.754 

c*+ c,+ 
- 28.236 0.326 0.404 
- 20.316 - 0.439 0.642 

AEEyZ RadicaL-The same procedure as before was employed with this species. The basic 
set of functions used was: (u,b,c), (a,c,b), ( ~ , u , c ) ,  (u,u,c), (c,c,u), (a,b,b), (b,b,c), (a,a,b), and (b,c,c). 
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In these determinants it is supposed that the three atomic functions in the above are associated 
with a, p, and a spin functions in that order. As with the ion, only certain combinations of the 
above are possible and these fall into the various symmetry classes as follows: 

The I' best " combinations of the above functions and the corresponding energies have been 
determined in the same manner as for the allyl ion and are summarised in Table 2. They are 
discussed below. 

TABLE 2. 

Energies (E) and coefficients of component functions for " best " wave functions for 
the allyl radical. 

Symmetry type E - 3W2, 
(ev) 

- 28.914 
- 16.422 - 15.972 
- 8.043 

- 26,482 
- 19.123 
- 14.562 - 10.315 

c, 
0.3 18 

-0.144 
- 0.204 
0.255 

cs 
0.665 
0.031 
0.426 
0.006 

Coefficients 
c, c, 
0.116 0.142 

- 0.296 0.628 
0.482 -0.027 

-0.519 -0.621 

c, c, 
0.099 -0.113 
0.353 0.435 

- 0.565 0,546 
- 0.398 - 0.384 

c4 
0.047 
0.244 
0.397 
0.613 

c, 
0.008 
0.314 
0.035 
1.719 

*A2 CB 
- 24.950 0.620 

AZZyZ Negative Ion.-The same procedure was employed with the negative ion. The basic 
set of determinantal functions used was: (a,a,b,c), (a,a,c,b), (a,b,c,c), (b,a,c,c), (a,c,b,b), (c,a,b,b), 
(a,a,c,c), (a,a,b,b), and (b,b,c,c). In these determinants the four atomic functions are associated 
with a, p, a, and p spin functions in that order. As with the negative ion and the radical only 
certain combinations of the above are allowed, and these fall into the various symmetry classes 
as shown. 

IAX: = (~ ,a ,b , c )  + ( a , ~ , b )  + (a,b,c,c) + (b,a,c,c) 
*z -  = (a,b,b,c) + (c,b,b,a) 
*a- = (a,a,c,c) 
*4- = (a,a,b,b) + (b,b,c,c) 

9,: *5- = (a,a,b,c) - (a,a,c,b) - (a,b,c,c) + (b,a,c,c) 

1B*: *6- = (aAZ,b,c) + (a,a,c,b) - (a,b,c,c) - ( b , C , C )  

*,- = (a,a,b,b) - (b,b,c,c) 

3B,: $8- = (a,a,b,c) - (a,a,c,b) + (a,b,c,c) - (b,a,c,c) 
$9- = (a,c,b,b) - (C,@,b,b) 

The " best " combination of the above functions, and the corresponding state energies, have 
been determined as for the other two species and are summarised in Table 3 which also tabulates 
the constants in the wave function. These results also are discussed below. 
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TABLE 3. 
Energies ( E )  and coefficients of components for ' I  best " wave functions for the allyl 

negative ion. 

l A 1  (ev) c1- G- C3- c4- 

Symmetry type E - 4W, Coefficients 

- 14.506 0.319 0.304 0.195 0.045 
- 6.481 0.198 - 0.700 0.383 0.033 

+ 5.748 - 0.404 0.183 0.5 19 0.739 
0.475 - 0.292 0.218 0.934 -0.338 

I Symmetry type E - 4W,, Coefficients 
-2 (ev) G- c7- 

0.547 -9.194 0.495 0.107 
1-4.920 -0.271 0-806 

c,- c,- 
0-466 

- 3.834 0.468 0.666 

cs- I - 8.099 

- 12.268 -0.315 

EXAMINATION OF RESULTS 
In this section the results that have been obtained for the ground states of the three species 

will now be examined, and the " best " functions and calculated energies will be compared with 
results obtained by using various approximate procedures. 

AZZyZ Positive Ion.-For the 'Al ground state of the allyl positive ion the wave function 
might be constructed on the valence-bond basis as a resonance hybrid of structures (V) and (VI) . 
If the Heitler-London method of constructing the wave functions of electron-pair bonds is used 
the resulting wave function would be 

{(a,b) + (b,a)) + {(b,c) + (c ,b))  = *l+. 

If bond orbitals (i.e., a + b, and c + d )  were used, the wave function would be 

(a  + b, a + b) + (b  + c, b + c) 

= ((a,b) + @,a) + (b,c) + ( c , W  + {(ad4 + (w)) + 2 { ( W )  
= *1+ + *3+ + 2*4+. 

On the other hand, the two-electron wave function might be constructed according to the 
molecular-orbital approximation (VII) ; in which case, i f  the simplest possible molecular 
orbital which has no adjustable constant, a + b + c, is used, the function would be: 

(a + b + c, a + b + c) 

= ((a,b) + fb,4 + ( b S 4  + ( C , W  + W,c) + (c,.>> + ((a84 + (CSC)) + W b ) )  
= *I+ + *2+ + *s+ + *4+. 

Alternatively, the simple Huckel form for the molecular orbital, a + b 1 / 2  + c, might be used, 
in which case the wave function becomes 

(a + b 4 2  + c, a + b 4 2  + c) = #11/2+ + 
When bond orbitals are used, this would be 

+ $3' + 2$4+- 

Finally, a wave function constructed on the basis of the non-pairing formula (VIII) (or VIIIa) 
may be tested. 

(a + b, b + c) + ( b  + c, a + b) 
= ((a,b) + @,a) + (W + ( c m  + {(a,c) + (c ,a) )  + 2 { ( W )  
= *1+ + **+ + 2*4+. 

In fact, the ' I  best " wave function for the ground state is 

0~313$~+ + 0*260$,+ + O.O2*3+ + 0*233$4+. 
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It is immediately apparent that the formula based on (VIII) comes closest to this. The 
Heitler-London valence-bond function is too limited, being just The bond-orbital valence- 
bond function is unsatisfactory because the coefficient of #2+ is small and that of a,h8+ considerable, 
which is the reverse of what is found for the " best " function. The molecular-orbital approxim- 
ations also fail to predict the small value found for C,+. On the other hand, the formula based 
on (VIII) does predict that C,+ should be small, and that C1+, C2+, and C,+ should be com- 
parable, which is the pattern of the constants in the '' best '' function. A comparison of the 
merits of the various functions may be tested by comparing the " energies " calculated from 
them, These are listed in the middle column of Tablc 4, where the energies are given as 
differences from 2W,, (ie., E - 2W,; cf. Table 1). 

TABLE 4. 

Results €or the ally1 positive ion obtained by using various functions having no 
adjustable constants. 

Functions Energy (ev) Overlap 
Valence bond (bond orbitals) .................................... - 27.642 0.871 
Valence bond (Heitler-London) ................................. - 28.678 0.929 
Molecular orbital (a + b + c) .................................... -28.830 0.958 
Molecular orbital (a + bd2 + c) .............................. -29.402 0.969 
Non-pairing formula (VIII) ....................................... -29.696 0-974 
" Best " function ................................................... -30.396 1.000 

This Table shows that, by this criterion, the molecular-orbital (with a + b + c) and the 
valence-bond (Heitler-London) method are approximately equally good (energy about 1.7 ev 
greater than the " best "). Huckel orbitals, which were obtained by a simple variation treat- 
ment of the one-electron problem, are somewhat better. However, the wave function based 
on (VIII) yields an energy only 0-7 ev (16 kcal.jmole) greater than the " best " value. That 
is, the new approximation, which locates one electron of the x-system in each bond, is the best 
of the five. 

The extent to which these five functions resemble the " best " one may also be tested by 

evaluating for each the overlap integrals /Y@dT where Y and @ are both normalised, and are 

respectively the " best " and the approximate functions. The results are shown in the last 
column of Table 4 .  This test places the five functions in the same order as does the energies, 
though the spacing is not quite the same. The non-pairing formula remains clearly better 
than the others and would probably, therefore, also be better for calculation of other molecular 
properties. 

The five functions so far discussed, and for which results were given in Table 4, contained 
no adjustable constants. In  order to give each of the three types (valence bond, molecular 
orbital, and non-pairing formula) an equal chance of improvement the following five functions, 
each containing one adjustable constant, were tested : 

Valence bond: 
A: (a + kb, a + kb) + (c  + kb, c + kb) 

= k$,+ + #,+ + 2k2#t4+. 
B (cf. ref. 6 ) :  (ka  + b, a + kb) + (a + kb, ka  + b) + (kc + b, c + kb) + (c  + kb, kc + b) 

= (1 + ka)$l+ + 2k4s+ +- a$,+. 

Non-pairing formula (VIII) : 
A :  (a + kb, c + kb) + (c  + kb, a + kb) 

= k#,+ + $2+ + 2k2$,+. 
B: (a  +- kb, b + kc)  f ( b  + kc, a + kb)  + (c + kb, b + ka)  + (b  + ka, c + kb) 

= (1 + k*)$,+ + 2k$,+ + 4k#,+. 
M M  
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(In these formulae it is again presumed that the a and the p spin function are associated with 
the orbitals in that order; cf. above.) Table 6 presents the results, listing the lowest energies 
(Le., E - 2W,) obtainable with these functions, the values of k that give these energies, and 

the magnitudes of the overlap integral, 1YQd.r (see earlier). 

TABLE 6 .  
Results for the ally1 positive ion obtained by using various functions having one 

adjustable constant. 
Functions Energy (ev) k Overlap 

Valence bond (A) .................................... -274342 1.236 0.869 
Valence bond (B) .................................... -29.302 0.1222 0.932 
Molecular orbital .................................... - 29.434 1,563 0.966 
Non-pairing (A) ....................................... -30.038 0.711 0.986 
Non-pairing (B) ....................................... - 30.20 1 0.252 0.988 
‘‘ Best ” function .................................... -30.396 - 1.000 

The order remains the same, the better non-pairing formuIa giving an energy only 0.2 ev 
(about 44 kcal./mole) greater than the “ best ’’ energy, and the overlap integral is 0.988. The 
molecular orbital remains better than the better valence-bond formula. Of the two valence- 
bond formula3, B is markedly better than A, as would be expected, because i t  increases the 
mean inter-electron separation by reducing the importance of “ ionic ” terms and by bringing 
the valence-bond (bond-orbital) representation towards the Heitler-London formulation. 
Both the non-pairing formulae are very successful, as judged by both energy and overlap. The 
reason why B is better than A is that it increases the probability of one electron’s being in the 
orbital on atom b. This produces a lowering of the energy because the central atom has, in 
effect, a greater electronegativity than the outer ones, having two near-neighbour carbon atoms 
which exert some attractive effect on the electron whereas the outer atoms have only one near- 
neighbour each. 

The 
main formulae that have been tested are represented by: 

This outweighs the effect of reducing the mean inter-electron separation. 
AZZyZ Radical.-The radical has been examined in the same way as the positive ion. 

Vatence bond: 
A: ( ( a  + kb, Q + kb, 6 ) )  - { ( G  + kb, c + kb, 4) = k *1+ + ** + k&’ 
B (ref. 6 ) :  ( ( a  + kb, k a  + b, c )  + ( k a  + b, a + kb, c ) )  

- ( ( c  + kb, + b, a) + (kc + b, c + kb, a)) 
= (1 + k2)$, + 2k$, + q 3 .  

Molecular orbital: 
{ (a  + kb + c, a + kb + c,c - a)) = 

{2(a + kb, b + kc, c )  + ( b  + kc, a + kb, c) + (a + kb, c, b + kc) }  - {2(c + kb, b + ka,  a )  

+ 2#2 + kg#, + 
Non+airing : 

+ (b  + ka, c + kb, a) + (c + kb, a, b + h a ) )  
= 3[##1 4- k#2 k$’s k2#41* 

The valence-bond formulae describe the resonance hybrid of (XIa and b). In the molecular- 
orbital descriptions, two electrons are in the-bonding orbital while the third is in what is 
essentially a non-bonding orbital. The non-pairing formula describes a resonance hybrid of 

(XIa) ~H,-CH=CH, CH,=CH<H, (XIb) 

(X) and its mirror image. 
be included with appropriate relative weights. 

tested (k  = 0 in valence bond B above). 
in B). 
The non-pairing formula (X) was tested with R = 1 (simple bond orbitals). 
solution is 0.318#, -!- 0-116#, + 0.142t,b3 + 0.047$,. 
where the “ energies ” are E - 3W, (cf. Table 2). 

With each, the three different spin distributions (Xa, b, c) must 

The Heitler-London function was 
As an alternative, bond orbitals were used (k = 1 

The molecular-orbital formula was tested with k = 1 and with k = 1 / 2  (Huckel). 
The “bes t”  

The results are presented in Table 6 

Tests were first made by using no adjustable constants. 

Coulson and Fischer, Phil. Mag., 1949, 40, 386. 
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TABLE 6. 

Results for the allyl radical obtained by using various functions having no adjustable 
constants. 

Functions Energy (ev) Overlap 
Non-pairing formula ................................................ - 26-409 0.897 
Molecular orbital (a + b + c) .................................... -26.600 0.908 

Valence bond (Heitler-London) ................................. - 27.996 0.967 
Valence bond (bond orbital) .................................... - 28.229 0.980 

Molecular orbital (a + b42 + c) .............................. -27.110 0.942 

" Best " function ................................................... -28.914 1.000 

The " energy test " and " overlap test " place the five schemes in the same order; this order 
is discussed below. 

The results obtained when each type of function is allowed one adjustable constant (i.e., 
k in each is chosen to minimise the energy) are listed in Table 7 (the energies are E - 3W2,). 
These results are somewhat disconcerting because, while the valence-bond and the mole- 
cular-orbital method have retained the order of merit that they had in the simpler treatment 
(Table 6), the non-pairing formula surpasses them all and its results are very close to the 
* '  best " function (see below). 

For completeness two other functions were tested but, because of their lack of success, the 
results obtained by means of them are not included in Table 7. One was a third valence-bond 
function constructed in a manner similar to B above, except that c in the first pair of terms was 
replaced by (c + kb),  and a in the second pair by (a + kb) .  The minimised energy was 

TABLE 7. 
Results for the allyl radical obtained by using various €unctions having one adjustable 

constant. 
Functions Energy (ev) k Overlap 

Molecular orbital .................................... -27-124 1-511 0.945 
Valence bond (A) .................................... -28.240 1.061 0.981 
Valence bond (B) .................................... -28.849 0.2212 0.998 
Non-pairing .......................................... - 28.904 0.2790 0.9996 .. Best .. function .................................... -28.914 - 1.000 

-28-848 with k = 0.1830, the overlap being 0.998. The performance is, therefore, almost as 
good as that of valence bond B, though k is, as would be expected by considering inter-electron 
repulsion, less in this case than for B .  The second was another non-pairing formula, in which 
the first term in the non-pairing formula above was changed to (a + kb, c + kb, c ) ,  and subse- 
quent terms were modified correspondingly. The performance of this was very little better 
than that of the non-pairing formula having k = 1 (Table 6). The energy was minimised with 
k = 1.080 at  -26.424 ev and the overlap was 0.898. If we consider the functions that have 
been tested, it seems unlikely that any simple one having only one adjustable constant will 
provide an improvement on the non-pairing formula (X), the results for which are given in 
Table 7. 

AllyE Negative Ion.-The ion has been examined in the same way as the other two species. 
The various formulze that have been tested may be represented by: 

Valence bond: 
A: {(a + kb, a + kb, c, 4) + ((6 + kb, c + kb, a, a)}  

B (ref. 6 ) :  { (a  + kb, Ira + b, c ,  c )  + (ka  + b, a + kb, c,  c ) }  
= k$,+ + 2$,+ + k*t,b4-. 

i ( ( c  + kb, kc + b, a, a) + (kc + b, c + kb, a, a ) )  
= (1 + k2)t#l- + 4K$,- + 2kt,b4-. 

Molecular orbifal:  
(a + kb + c, a + kb + c ,  c - a, c - a) = 2k$,- + k2$,- + 4$,- + k2#,-. 

Non-pairing: 
{(a, a + kb, kb + C, c )  + (el c + kb, Kb + a, a)} = kz+bl- + kat+hz4 + 2#,-.* 

This shows that formula (IX) leads to a satisfactory function; see " Electron Spin " section. 



Hirst and Linnett : 
In the first place, tests were made with no adjustable constants, i . e . ,  the valence-bond 

formula B with k = 0 (Heitler-London) and k = 1 (bond orbital) were tested. The molecular- 
orbital formula was tested with k = 1 and k = 4 3  (Huckel). The non-pairing formula (based 
on IX) was tested with k = 1 (bond orbitals). 

I t  is 
clear that the best of the above formulz (with no adjustable constant) is the non-pairing one, 
as it leads to a solution which makes the coefficient of #,- zero, and this is, in fact, found to be 
very small. Both the valence-bond (bond orbital) and the molecular-orbital method give 
quite the wrong pattern of coefficients, in particular overestimating the contribution of t,h3- 
and t,$4-. The 
results for all these functions are listed in Table 8. The “ energies ” are E - 4Wzp (cf. Table 3). 
The results are similar to those obtained for the positive ion, though, in this case, the energy 

The If best ” formula was found to be 0.319#,- + 0.304#,- + 0.195#,- + 0.045#4-. 

The valence-bond (Heitler-London) method is, of course, over-restrictive. 

TABLE 8. 

Results for the allyl negative ion obtained by using various functions having no 
adjustable constants. 

Functions Energy (ev) Overlap 
Valence bond (bond orbital) .................................... - 11.440 0-864 
Valence bond (Heitler-London) ................................. - 12.570 0.918 
Molecular orbital (a + b + c) .................................... -12.968 0.929 
Molecular-orbital (a + b d 2  + c) .............................. -13.432 0.956 
Non-pairing ......................................................... - 13.41 6 0.958 
“ Best ” function ................................................... - 14.506 1.000 

derived by using the Huckel molecular orbitals is lower than that derived by using the non- 
pairing function. The difference is very small and the non-pairing formula overlaps the 
‘ I  best ’’ function better. 

The results obtained when each type of function is allowed one adjustable constant are 
listed in Table 9 (the energies are E - 4W,,). The order is now the same as that obtained 

TABLE 9. 
Results for the allyl negative ion obtained by using various functions having one 

ad justable constant. 
Functions Energy (ev) k Overlap 

Valence bond (A) .................................... - 11.495 0.8965 0.851 
Valence bond (B) .................................... -13.206 0.1195 0.921 
Molecular orbital .................................... - 13.438 1.4767 0-962 
Non-pairing .......................................... - 14.098 0.984 1 *599 1 .. Best .. function .................................... - 14.506 I 1.000 

with the positive ion, and the non-pairing formulation leads to a markedly better result than 
does the best molecular-orbital representation. The energy obtained by using the non-pairing 
function is about 10 kcal. per g.-ion greater than that obtained by using the “ best ” function. 
This is not quite as good as for the positive ion. 

For all three species, the most satisfactory formulation is one that is of a bond-type but 
discards (for electrons in x-orbitals) the idea of pairing electrons in the same orbital or the same 
bond. That is, the representations are radically different from those obtained by the ordinary 
molecular-orbital method arid also from those obtained by the ordinary valence-bond method 
which employs Lewis-Langmuir component structures as the basis. 

DISCUSSION 
For the cation the calculations for the 

ground state have shown that formula (VIII) (non-pairing) represents the electronic 
structure better than does (VII) (molecular orbital) or a resonance hybrid of (V) and (VI) 
(conventional valence bond with Pauling-type resonance). Though formuk of this type 
do not seem to have been suggested previously, it is to be expected that (VIII) should have 
a lower energy than a hybrid of (V) and (VI) because all these have two electrons of the 
x-system in bond regions but (VIII) separates the two electrons more than do (V) and (VI). 
Therefore, for structure (VIII), inter-electron repulsion will be less than for (V) and (VI), and 

The cation and anion will be considered first. 
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hence structure (VIII) has a lower energy. It is interesting that structure (VIII) and the 
resonance hybrid of (V) and (VI) both describe the two x-bonds as half-bonds. However, 
the hybrid achieves this by describing each bond as a combination of a single x-bond for 
one structure and a zero x-bond for the other, the two structures having equal probability. 
On the other hand, (VIII) is a structure for which the two bonds are simultaneously half- 
bonds. The molecular-orbital formula (VII) gives equal probability to the distribution 
in which the two electrons are in separate bonds and to those in which they are in the same 
bond. Consequently, as might be expected, it is less good than the non-pairing formula 
(VIII) but better than the valence-bond (resonance) description (V and VI) which puts 
both electrons in the same bond. 

The wave function corresponding to the non-pairing structure (VIII) was allowed one 
adjustable constant in two ways. The first, A , is made of separate parts which are them- 
selves symmetrical, but the second, B,  is made up of parts which are unsymmetrical. 

c H ,.c H-XH, C H aLC H"C H 2 

(VIIIb) (VI I I c') 
C H , ~ C H ~ C H ,  

(VI I I c") 

The first may be represented by (VIIIb) and the second by (VIIIc' and c").* Of these, 
the second (B)  is definitely the better. For A, the energy E is minimised with (a + 0*711b, 
c + 0.711b), etc. But it reduces 
the probability of the electrons' being near the central atom, which, as pointed out above, 
has a greater effective electronegativity than the outer atoms. For B, the energy E is 
minimised with (a + 0.2523, b + 0-252c), etc., and the greater success of this function 
shows clearly the effect of the greater effective electronegativity of the central atom. 

For the negative ion the valence-bond description may be represented diagrammatically 
as a resonance hybrid of (XIIa and b). The molecular-orbital formula is (XIII), which is 

This is to be expected since it separates the electrons. 

n- 
C H ,=CH-C H CH,-CH=CH2 C H 2 - C  H-CH 2 H aLCH'k H 2 

I 
(XIIa) (XIIb (XIII) (XIV) 

analogous to (111) for the NO,- ion. The non-pairing formula is (XIV). As described 
above, the two most important structures are those described by (IX). For the same 
reasons as for the positive ion, (XIV) is a better description than the resonance hybrid 
of (XIIa and b), and it is also better than (XIII). Again the balancing effects of increasing 
the binding and decreasing the inter-electron repulsion are apparent. In  the wave 
function for the non-pairing formula which has one adjustable constant, the simple bond 
orbital (a + b) is replaced by (a + 1.59963). In this case, both inter-electron repulsion 
and the effect of electronegativity favour k > 1, which is a little different from the situation 
in the positive ion. Therefore a formula analogous to (VIIIb, c', and d') which were 
drawn for the cation would be (XIVa) which gives rather more information than (XIV). 

~H~--YHLCH, (X1k-a) 

Though this formulation also has severe limitations, it stresses the fact that terms such as 
aabb and bbcc have little importance in the wave function, whereas the valence-bond- 
resonance description gives them as much weight together as aacc-this is its major fault. 

The radical presents for discussion a more difficult problem than that for the two ions. 
On the other hand, for it, the best approximate function is very close indeed to the " best " 
function (overlap 0.9996). There is here amatter of principle. Looking at  the perform- 
ance of the functions with no adjustable constants (Table 6), we should conclude that 

* In  formuk VIIIb, c', and c", the position of the dot is used to indicate which atomic orbital makes 
Thus, in the function represented by (VIIIb), the orbitals 

This type of formula clearly has limitations but it is 
the bigger contribution to  the bond orbital. 
on the outer atoms make larger contributions. 
also useful in the present discussion. 
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the valence-bond description is much the best, being much better than that based on the 
non-pairing or double-quartet formulation. But when one adjustable constant is allowed 
the relative merits are reversed (Table 7). This means that the conclusion derived from 
the more approximate approach is almost certainly wrong. It means that, with this 
degree of limitation (i.e. , no adjustable constant) placed on the functions, the best electron 
distribution that can be obtained is that provided by the valence-bond method. However, 
this does not prove that the valence-bond method provides a very good description, 
because the limitation that has been imposed on the functions apparently precludes any 
approximate solution from approaching the true one closely. Because the results obtained 
with the non-pairing formula containing one adjustable constant are so good, little signifi- 
cance can be attached to the conclusions based on the simpler treatment. Therefore 
we conclude that the best representation of the structure is a hybrid of (XVa and b) rather 
than a hybrid of (XVIa and b). 

(XVa) kH,-XHqHa CHS-HqHa (Xvb) 

(XVIa) 'CH a-C H% H, CH,%H--6H, (XVIb) 

On the basis of achieving a balance between chemical binding and inter-electron 
repulsion (as has been discussed above) this can be readily understood. 

For the radical, the molecular-orbital method produces a poor description, a conclusion 
with which the results in Tables 6% and 7 are in accord. A Turther indication that the 
radical presents a somewhat different problem from the two ions and is not necessarily 
intermediate between them is provided by the values of the three constants required to 
minimise the energies in the valence-bond formulations. They are : cation 0.1222; 
radical 0.2212; anion 0.1195. This difference is clearly because a high value of this 
constant introduces, for the ions, terms that are wanted (e.g., bb for the cation) and terms 
that are not wanted (e.g., aa and cc for the cation), whereas, for the radical, it brings in 
only terms that are wanted (e.g., aab type and abb type). 

Perhaps the x-binding in the allyl radical should be considered in the following way. 
The distribution (XVII) would provide some binding because the energy of an electron 

~~H,--.CH--.CH, (XVII) 

in a 2px-orbital on, for example, the CH group is lower in the system CH,-CH-CH, than 
in the isolated CH group. But, in addition, there is an increased lowering of the energy 
because of electron drifts in the two directions in the molecule of the type represented by 
(XVa and b). 

Lastly, certain implications of these results will be mentioned though it must be stressed 
that they constitute extrapolations of what has been found for the allyl systems. For the 
nitrite ion it would seem that (IV) is likely to be the best simple formula. Similarly, for 
ozone.the best formula is almost certainly (XVIII) rather than the combination of the 
two valence-bond-resonance structures or the molecular orbital-formulation. Similarly 

CH,,-C 

(XVI I  I) (X IW (XX) 
the acetate ion would presumably be written better as (XIX). Often the electronic 
structure of the acetate ion is represented by (XX), but this is used either as an 
abbreviation for the Pauling-type resonance pair of structures or to indicate that the 
two bonds are equal, without implying anything in particular about the wave function 
(this vagueness is, of course, most unsatisfactory and should be avoided, because it means 
that the formula has no real or definite meaning). 
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In the ally1 positive ion there are two a-bonds and two electrons in the x-system, and 

it is found that the ground state involves two simultaneous x-half-bonds, rather than the 
Pauling-type resonance between single and zero-x-bonds. This suggests 
that for benzene, in which there are six electrons in x-orbitals and six 
0-bonds, the structure will consist of six simultaneous x-half-bonds, the 
formula being (XXI).' This, and the other systems mentioned above, 

as well as a number of others, are being examined along similar lines and the results 
will be presented in future papers. 

We thank P. G.  Dickens, B. J. Duke, and R. E. Townshend for many valuable discussions, 
the Royal Society and Imperial Chemical Industries Limited for providing desk calculating 
machines, and the staff of the Oxford University Computing Laboratory for assistance. 

( x x ~ )  0 

INORGANIC CHEMISTRY LABORATORY, THE UNIVERSITY, 
SOUTH PARKS ROAD, OXFORD. 

7 Dewar and Schmeising, Tetrahedron, 1960, 11, 96. 

[Received, July 5th, 1961.1 


